K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Ta có : \(\left(5x+5y+5z\right)^2-\left(25xy+25yz+25zx\right)\)

\(=25\left(\left(x+y+z\right)^2-\left(xy+yz+zx\right)\right)\)

Xét : \(\left(x+y+z\right)^2-\left(xy+yz+zx\right)=0\)

\(=>x^2+y^2+z^2+2xy+2yz+2zx-xy-yz-zx=0\)

\(=>x^2+y^2+z^2+xy+yz+zx=0\)

Nhân biểu thức với 2 ta được:

\(2x^2+2y^2+2z^2+2xy+2yz+2zx=0\)

\(=>\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2=0\)

\(=>x+y=y+z=z+x=0\)

Vạy để phân thức A xác định thì x,y,z không đồng thời bằng 0;

CHÚC BẠN HỌC TỐT...

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

3 tháng 8 2017

Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)

Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)

\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)

\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)

17 tháng 8 2021

undefined

13 tháng 11 2019

Giúp mình với các bạn

23 tháng 5 2015

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-zx\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

=\(\frac{x^2y+x^2z+xy^2+y^2z+xz^2+yz^2-x^2y-x^2z-xy^2-y^2z-xz^2-yz^2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=0\)

                   lik.e nhé!