Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 ( k \(\in\)N )
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố
Vì 3( k + 1 ) chia hết cho 3 nên dạng p = 3k + 1 không thể có
Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3
Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ
=> p + 1 là 1 số chẵn
=> p + 1 chia hết cho 2
Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1
=> p + 1 chia hết cho 6
số 5
1 ) 5 > 3
2 ) 5 + 2 = 7 ( 7 là số nguyên tố )
3 ) 5 + 1 = 6 ( điều phải chứng minh )
Các số nguyên tố p lớn hơn 3 : 5,7,11,13,.....
Ta có : p+2 cũng là số nguyên tố thì chỉ có p=5 thì p+2=7 mới là số nguyên tốt
Ta có p = 5 suy ra p+1=6 chia hết cho 6 (đccm)
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
Cho đoạn thẳng AB,M là trung điểm của nó.Lấy điểm C thuộc đoạn thẳng AB(C không trùng với các diểm A,B và M) sao cho AC<CB
a,Trong ba điểm A,M,C điểm nào nằm giữa 3 điểm còn lại?
b,Trên tia đối tia BA lấy điểm N.Chứng tỏ rằng:MN=AN+BN/2
+ nếu thì là hợp số (loại)
+ thì là số nguyên tố; là số nguyên tố; là số nguyên tố (tm)
+ với thì hoặc p=3k+2
Với thì: là hợp số (loại)
CM tương tự với .
Kết luận: thì cùng là số nguyên tố
p+2 ;p+8 ;4*p*p+1
+ nếu p=2p=2 thì p+2=4⋮2p+2=4⋮2 là hợp số (loại)
+ p=3p=3 thì p+2=5p+2=5 là số nguyên tố; p+8=11p+8=11 là số nguyên tố; 4p2+1=374p2+1=37 là số nguyên tố (tm)
+ với p>3p>3 thì p=3k+1p=3k+1 hoặc p=3k+2
Với p=3k+1p=3k+1 thì: p+8=3k+9⋮3p+8=3k+9⋮3 là hợp số (loại)
CM tương tự với p=3k+2p=3k+2.
Kết luận: p=3p=3 thì p,p+2;p+8;4p2+1p,p+2;p+8;4p2+1 cùng là số nguyên tố
Vì p và p2+3 là số nguyên tố => p chỉ có thể là số lẻ hoặc p = 2 là số chẵn
Xét p2+3 là số lẻ => p2 là số chẵn trái với p là số nguyên tố
=> p = 2
=> p5+5=25+5=32+5=37 . Mà 37 là số nguyên tố
=> ĐPCM
Thank you bạn nhiều nha!