K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Ta có: p là SNT > 3 => p k chia hết cho 3

=> p^2 chia 3 dư 1 => p^2 + 2012 chia hết cho 3 và p^2 + 2012 > 3 => p^2 + 2012 là hợp số.

19 tháng 8 2016

lớp mấy mà không biết làm hả

19 tháng 8 2016

năm nay lên lớp 6

27 tháng 2 2016

p nguyen to >3 => p khong chia het cho 3 => p co dang 3k+1 va 3k+2

TH1 : p=3k+1=> p2+2012 = (3k+1)2+2012=9.k2+6k+1+2012=9k2+6k+2013 chia hết cho 3 =>là hợp số

TH2 : BAN TU THƯ TRƯỜNG HỢP p=3k+2 nhé

CÒN KẾT QUẢ THÌ NÓ LÀ HỢP SỐ

19 tháng 3 2016

ban dua p ve dang 3k+1 va 3k+2 roi tinh p^2+2012 va thay no deu chia het cho 3 .Tu do p^2+2013 la hop so

19 tháng 3 2021

Ta có: $p$ là số nguyên tố $>3$

suy ra $p\not\vdots 3$

Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $

Mà $2009 \equiv 2 (mod 3)$

nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$

Hay $p^2+2009 \vdots 3$

mà $p^2+2009>3$ nên $p^2+2009$ là hợp số

18 tháng 3 2021

Bạn ơi cái bị lỗi có dấu ko chia hết nhé

27 tháng 3 2017

p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2

Mà dạng 3k+1 không thể xảy ra nên p = 3k+2

Do đó, ta có: p2+2012 = (3k+2)2+2012 = (3k+2)(3k+2)+2012

                                 = 3k(3k+2)+2(3k+2)+2012 = 9k2+6k+6k+4+2012

                                 = 9k2+12k+2016 = 3(3k2+4k+672)

=> p2+2012 chia hết cho 3 => p2+2012 là hợp số

                                 

3 tháng 4 2016

Vì:

Gọi n là số nguyên tố 

+ Các số nguyên tố mũ  2 đều là hợp số vì nó chia hết cho n , chính nó , 2 ( vì là hợp số )và 1

+ MÀ các hợp số =2012 là số chẵn 

=> Số đó chia hết cho 2 nữa

Vậy chúng ta kết luận Số đó là hợp số nhá

18 tháng 11 2021

Vì P > 3

 Đặt p = 3k + 1 ; p = 3k + 2 

Khi p = 3k + 1 => p2 + 2012 = (3k + 1)2 + 2012 = 9k2 + 6k + 2013 = 3(3k2 + 2k + 671) \(⋮\)3 (1)

Khi p = 3k + 2 => p2 + 2012 = (3k + 2)2 + 2012 = 9k2 + 12k + 2016 = 3(3k2 + 4k + 672) \(⋮\)3 (2)

Từ (1) và (2) => Khi p \(\in P\); p > 3 thì p2 + 2012 hợp số

28 tháng 12 2017

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

28 tháng 12 2017

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số