K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

15 tháng 4 2018

a) B,A,C,D nằm trên (O) => tg ABDC nt

góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN

Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)

b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H

c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN

=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2

20 tháng 3 2020

a, Ta co 2 bo de quen thuoc sau : FC la phan giac ^EFD, FB la phan giac PFD

ma QR//EP nen

\(\widehat{PFB}=\widehat{FQD}=\widehat{QFD}\Rightarrow\Delta DFQ\) can tai D => DF=DQ (1)

mat khac theo tinh chat tia phan giac ngoai ^PFD co \(\frac{FD}{FP}=\frac{CD}{CP}\) 

ma \(\frac{CD}{CP}=\frac{DT}{PF}\) (DT//PF)

suy ra \(\frac{DF}{PF}=\frac{DT}{PF}\Rightarrow DT=DF\) (2)

Tu(1)va (2) suy ra DT=DQ hay D la trung diem QT

b, Goi S la trung diem BC ta chung minh PQSR noi tiep 

Co \(\Delta PSE~\Delta ESD\left(G-G\right)\Rightarrow\frac{PS}{ES}=\frac{ES}{SD}\Leftrightarrow ES^2=PS.DS\)

lai co ES=SB=SC do S la trung diem canh huyen BC cua tam giac vuong BEC

suy ra \(BS^2=PS.SD=DS\left(PD+DS\right)=SD^2+PD.DS\)

=> \(PD.DS=BS^2-SD^2=\left(BS-DS\right)\left(BS+DS\right)=BD.DC\) (3)

Mat khac ^DQB=^PFB(cmt)

^PFB=^RCD( BFEC nt)

suy ra ^DQB=^RCD=> BQCR noi tiep

=> \(BD.DC=DQ.DR\) (4)

Tu (3),(4) suy ra DP.DS=DQ.DR => PQDR noi tiep 

=> (PQR) di qua S la trung diem BC co dinh

c,lay H' doi xung voi H qua BC, ta co H' thuoc (O) .

ta lai co bo de sau : \(BD.DC=DH.DA\) (quen thuoc)

suy ra \(DP.DS=DH.DA\left(=DB.DC\right)\)

<=> \(\frac{DH}{DP}=\frac{DS}{DA}\)

ma ^HDP=^SDA=90

suy ra \(\Delta DHP~\Delta DSA\left(c-g-c\right)\Rightarrow\widehat{DHP}=\widehat{DSA}\)

va \(\widehat{DSA}=\widehat{AHK}\left(phu\widehat{DAS}\right)\)

=>\(\widehat{DHP}=\widehat{AHK}\) => P,H,K thang hang

lai co \(\widehat{AFH}=\widehat{AKH}=\widehat{AEH}=90\)

=> A,F,H,K,E cung thuoc 1 duong tron =. FHKE noi tiep

=>\(PF.PE=PH.PK\) (5)

ma BFEC noi tiep => \(PF.PE=PB.PC\) (6)

(5)+(6)Suy ra \(PH.PK=PB.PC\) => BHKC noi tiep

Vi H' ,I doi xung voi H,K qua BC ma BHKC noi tiep => BH'IC noi tiep

do vay \(I\in\left(BH'C\right)=\left(ABH'C\right)=\left(O\right)\)

e,Goi tam (CJL) la U, (U) cat (O) tai V, BC giao OG tai X

=> \(\widehat{VBG}=\widehat{VJG}\left(=\widehat{VCB}\right)\) =>BJVG noi tiep

=> B,J,X,V,G cung thuoc 1 duong tron => ^BVG=^BXG=90

lai co ^XVG +^XBG=180 hay ^XVG+^BAC=180

va ^BVC+^BAC=180

suy ra ^XVG=^BVC

hay 90 +^XVB=^XVB+^XVC

=> ^XVC=90

=> V thuoc duong tron dk XC

mat khac V cung thuoc (O)

suy ra V co dinh ,C co dinh 

suy ra tam U di chuyen tren trung truc VC co dinh (dpcm)

18 tháng 3 2020

em mới lớp 5 lên ko bít bài này