K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Mình nghĩ \(M\in(O)\) với \(M\neq K\).

a) Ta có tứ giác AKBC nội tiếp nên \(\widehat{AKB}+\widehat{ACB}=180^o\Rightarrow\widehat{AKB}=\widehat{ACE}\). (1)

Tứ giác AMBK nội tiếp nên \(\widehat{AMK}=\widehat{ABK}\) mà \(\widehat{AMK}=\widehat{AEC}(\text{so le trong, KM//EC})\) nên \(\widehat{ABK}=\widehat{AEC}\). (2)

Từ (1), (2) suy ra \(\Delta ABK\sim\Delta AEC(g.g)\).

b) Theo câu a: \(\Delta ABK\sim\Delta AEC\Rightarrow \frac{AK}{AB}=\frac{AC}{AE};\widehat{BAK}=\widehat{EAC}\)

\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AK}{AC};\widehat{BAE}=\widehat{KAC}\Rightarrow\Delta ABE\sim\Delta AKC\left(c.g.c\right)\).

13 tháng 1 2021

c) Ta có KM // BC nên \(\Delta ABK\sim\Delta AEC\sim\Delta AMF\)

\(\Rightarrow\dfrac{AK}{AF}=\dfrac{AB}{AM}\).

Từ đây dễ suy ra \(\Delta AFK\sim\Delta AMB(c.g.c)\).

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO