Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}n+1=a^2\\n+6=b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=a^2-1\\n=b^2-6\end{matrix}\right.\Rightarrow a^2-1=b^2-6\)
\(\Rightarrow a^2-b^2=-6+1=-5\\ \Rightarrow\left(a-b\right)\left(a+b\right)=-5\cdot1=-1\cdot5\)
Vì \(n+1< n+6\Rightarrow a< b\Rightarrow a-b< a+b\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=-1\\a+b=5\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=-5\\a+b=1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\end{matrix}\right.\Rightarrow n=3\)
xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không
S = 1/2 + 1/3 + 1/4 +...... + 1/ n
=> 1/ S = 2 + 3 + 4 +......+n
=> 1 = ( 2+3+4 +......+ n)S
=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n)
vì n thuộc n nên ( 2+3+4+...+ n) sẽ là số nguyên
=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên
Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1
có 2 Th để dấu bằng xảy ra là
2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1
Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n
Th1 không thể xảy ra vì 2=3+4=...+n khác 1
nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số
Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh
bài 1:
Mẫu số của phân số đó là : 30 : (23 - 17) x 23 =115
Tử số của phân số đó là : 115 - 30 = 85
=> Phân số cần tìm là : \(\frac{85}{115}\)
Bài 2:
a) với mọi n
b) \(A=\frac{8n+21}{2n+6}=\frac{8n+24-3}{2n+6}=\frac{4.\left(2n+6\right)-3}{2n+6}=\frac{4\left(2n+6\right)}{2n+6}-\frac{3}{2n+6}\) = \(4-\frac{3}{2n+6}\)
Để A thuộc Z thì \(\frac{3}{2n+6}\in Z\Rightarrow3⋮2n+6\) \(\Rightarrow2n+6\) \(\inƯ\left(3\right)\) \(=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-\frac{9}{2};-\frac{7}{2};-\frac{5}{2};-\frac{3}{2}\right\}\)
mà n \(\in Z\Rightarrow n\in\) rỗng.
\(3n:\left(n-1\right)\)
\(\Rightarrow3n-3+3:\left(n-1\right)\)
\(\Rightarrow3\left(n-1\right)+3:\left(n-1\right)\)
\(\Rightarrow3:\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{1;3\right\}\)
thế n-1 vô từng trường hợp các ước của 3 rồi tìm n nha
dấu : là chia hết nha