K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: dễ, nếu cậu tk tớ sẽ giải

Bài 2: ( tự vẽ hình nhess)

Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)

mà BM=2/3 BC

=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)

=> AM là trung tuyến ứng BN

mà AM được kéo dài cắt BN tại I nên I là trung điểm BN

7 tháng 1 2020

\(\text{a) Xét }\)\(\Delta ABD\text{ và }\Delta MCD\text{ có :}\)

\(BD=DC\left(gt\right)\)

\(\widehat{ADB}=\widehat{MDC}\left(đ^2\right)\)

\(AD=DM\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta MCB\left(c.g.c\right)\)

\(\Rightarrow AB=MC\)\(\left(\text{hai cạnh tg ứng}\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{BCM}=90^o\)

\(\Rightarrow MC\perp BC\)

7 tháng 1 2020

\(\text{b) Xét :}\)\(\Delta ABC\perp\text{ tại B}\)

                   \(\Delta MCB\perp\text{tại C }\)

\(\text{Có :}\)\(AB=MC\left(cmt\right)\)

            \(BC:\text{ cạnh chung}\)

 \(\Rightarrow\Delta ABC=\Delta MCB\left(Cgv-cgv\right)\)

8 tháng 8 2017

a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)

           ^A  + 2^A= 90°

               3^A     = 90°

                 ^A     = 30°

^B= 90° - 30°= 60°

b)Xét ΔACB và ΔACD có

AC là cạnh chung

^ACB= ^ACD (=90°)

CD= CB (gt)

Vậy ΔACB = ΔACD

=> AD= AB

Xét ΔANC và ΔAMC có

AN= AM (gt)

^NAC=^MAC ( ΔACB = ΔACD )

AC là cạnh chung

Vậy ΔANC = ΔAMC

=> CN= CM

c) Xét ΔNCI và ΔMCI có

CN=CM (cmt)

^NCI=^MCI ( ΔANC = ΔAMC)

CI là cạnh chung

Vậy ΔNCI = ΔMCI

=> IN= IM

8 tháng 8 2017

Bạn làm lun cho mk phần d đc k

16 tháng 8 2017

A B C I K

Xét tam giác BKI và CKI

Ta có BI=CI; IK chung; KC=KB (Vì K nằm trên AI)

Suy ra Tam giác BKI=Tam giác CKI => Góc KBI=Góc KCI

Mà Góc ABI=Góc ACI (Vì tam giác ABC cân)

Suy ra: Góc ABI+Góc KBI=Góc ACI+Góc KIC= 900

=> KC vuông góc với AC

16 tháng 8 2017

CM t/g ABK = t/g ACK => góc ABK = góc ACK => góc ACK = 90 độ => AC vuông góc với KC  

4 tháng 2 2018

a)   \(\Delta ABC\)cân tại   \(A\)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\)   ;     \(AB=AC\)

mà    \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\)  (kề bù)

\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)

Xét:   \(\Delta ABM\)và     \(\Delta ACN\)có:

      \(AB=AC\)(cmt)

     \(\widehat{ABM}=\widehat{ACN}\)(cmt)

     \(BM=CN\)(gt)

suy ra:    \(\Delta ABM=\Delta ACN\)(c.g.c)

\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta AMN\)cân tại   \(A\)

9 tháng 12 2015

Mình nhờ vẽ mà