Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x | - 1 = 2
| x | = 2 + 1
|x| = 3
X = 3 hoặc x = -3
chọn D. x = 3 hoặc x = - 3
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
a: Ta có: \(\left(x-2\right)\left(x+1\right)< 0\)
\(\Leftrightarrow-1< x< 2\)
b: Ta có: \(\left(x+\dfrac{1}{3}\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge1\end{matrix}\right.\)
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất
Mà \(\left(x+\frac{1}{2}\right)^2>=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5
b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất
\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất
tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)
\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)
D
\(\Leftrightarrow\left|x\right|=3\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)