Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\left(m+1\right)x^2-2\left(m+1\right)x-m\)
\(m=-1\Rightarrow y'=1>0\forall x\in R\)
\(m\ne-1\Rightarrow y'>0\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\left(vl\right)\end{matrix}\right.\)
Vậy với m=-1 thì...
\(y'=x^2-2x+m\)
\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)
Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)
\(\Rightarrow m\ge1\)
a/ \(y'=3mx^2-2\left(m+1\right)x+3m\)
Xet m=0 ko thoa man
Xet m khac 0
\(y'\ge0\Leftrightarrow\left(m+1\right)^2-9m^2\le0\Leftrightarrow8m^2-2m-1\ge0\)
\(\Leftrightarrow m^2+8\le0\left(vl\right)\) => ko ton tai m thoa man
b/ \(y'=mx^2-2mx+2m-1\)
m=0 ko thoa man
Xet m khac 0
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\left(2m-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\ge1\)
Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết
Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.
\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho
\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)
\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)
Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)
TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)
TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu