Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có A A ' ⊥ A B A C ⊥ A B ⇒ A B ⊥ A C C ' A ' ⇒ B C ' ; A C C ' A ' ^ = B C ' A ^
Tam giác B A C ' vuông tại A, có tan B C ' A ^ = A B A C ' ⇒ A C ' = a 3 tan 30 0 = 3 a
Tam giác A A ' C ' vuông tại A' , có A A ' = A C ' 2 − A ' C ' 2 = 2 a 2
Thể tích khối lăng trụ cần tính là V = A A ' . S A B C = 2 a 2 . 1 2 . a 3 a = a 3 6
Chọn D.
Phương pháp : Xác định góc. Diện tích xung quanh hình lăng trụ đứng bằng chu vi đáy nhân với chiều cao. Từ đó xác định chu vi đáy và chiều cao.
Vậy diện tích xung quanh hình lăng trụ là
Chọn C.
Phương pháp: Sử dụng định ly Pytago và lượng giác để tính các cạnh.
Đáp án D
Phương pháp :
+) Kẻ AD ⊥ B’C, xác định góc giữa mặt phẳng (AB’C) và mặt phẳng (BCC’B’)
+) Tính BB’.
+) Tính thể tích khối lăng trụ và suy ra thế tích AB’CA’C’
Cách giải :
Gọi H là trung điểm của BC ta có
Trong (AB’C) kẻ AD ⊥ B’C
Ta có:
=> ((AB'C);(BCC'B')) = (AD;HD) = ADH
Ta có
Dễ thấy ∆CBB’ đồng dạng với ∆CDH (g.g)
Ta có:
Đáp án A
Ta có:
A I = 2 a 2 − a 2 = a 3 ; A A ' = A I tan 60 ° = a 3 . 3 = 3 a
Thể tích lăng trụ là:
V = A A ' . S A B C = 3 a . 1 2 2 a 2 sin 60 ° = 3 3 a 3