K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

............................

.........................???????/

23 tháng 10 2018

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

23 tháng 10 2018

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

24 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz và Nesbitt ta có:

\(P\le\sqrt{\left(1+1+1\right)\left(3-\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\right)}\)

\(\le\sqrt{\left(1+1+1\right)\left(3-\frac{3}{2}\right)}=\frac{3\sqrt{2}}{2}\)

25 tháng 5 2018

rõ đi bạn mình không hiểu lắm

6 tháng 9 2020

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

7 tháng 9 2020

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

25 tháng 3 2018

  Áp dụng BĐT côsi ta có: 

a² + bc ≥ 2.a√(bc) 

<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1) 

tương tự vậy: 

1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2) 

1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3) 

lấy (1) + (2) + (3) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab)) 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!) 

Ta chứng minh bổ đề: 

√(ab) + √(bc) + √(ac) ≤ a + b + c 

thật vậy, áp dụng BĐT côsi ta được: 

a + b ≥ 2√(ab) --- (*) 

a + c ≥ 2√(ac) --- (**) 

b + c ≥ 2√(bc) --- (***) 

lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ] 

<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@) 

từ (!) và (@) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )

15 tháng 7 2020

Áp dụng AM - GM:

\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Khi đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)

\(2ab+3bc+4ca=5abc\)

Do a,b,c lần lượt là độ dài 3 cạnh của tam giác  

\(\Rightarrow\frac{2ab}{abc}+\frac{3bc}{abc}+\frac{4ca}{abc}=\frac{5abc}{abc}\Rightarrow\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y >0 (Dấu "=" xảy ra khi x=y) 

Ta có: \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)

\(=\left(\frac{2}{b+c-a}+\frac{2}{c+a-b}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)

\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)

\(\ge\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)

Vậy ...

14 tháng 6 2016

Bài 2:

Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

(bình phương vài lần + biến đổi tương đương)

\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)

\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)

15 tháng 6 2016

cau 1 su dung bdt tre bu sep la ra