Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a, b, c là 3 cạnh của tam giác ABC nên a, b, c đều dương. Do đó cả 2 vế đều dương.
Lập phương mỗi vế, ta được phương trình mới tương đương với phương trình đã cho:
\(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 8\cdot4=32\left(1\right)\)
Ta có \(\frac{a^3}{b^3+c^3}< \frac{2a^3}{a^3+b^3+c^3}\);\(\frac{b^3}{a^3+c^3}< \frac{2b^3}{a^3+b^3+c^3}\)và \(\frac{c^3}{a^3+b^3}< \frac{2c^3}{a^3+b^3+c^3}\)
Do đó \(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 2< 32\)
Vì vậy bất đẳng thức (1) là đúng, nên bất đẳng thức đã cho là đúng
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)
Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm
A = \(\sqrt{1-\frac{a}{b+c}}+\sqrt{1-\frac{b}{a+c}}+\sqrt{1-\frac{a}{b+c}}\)
DO A,,B,C LÀ 3 CẠNH CỦA TAM GIÁC
=> A < B+C , B<A+C , C<A+B
=> \(\frac{a}{b+c},\frac{b}{a+c},\frac{c}{a+b}< 1\)
ÁP DỤNG BẤT ĐẲNG THỨC CÔ SI CHO 2 SỐ NGUYÊN KHÔNG ÂM
=> A <\(\frac{1+1-\frac{a}{b+c}}{2}+\frac{1+1-\frac{b}{a+c}}{2}+\frac{1+1-\frac{c}{a+b}}{2}\)
= \(\frac{8-\frac{a}{b+c}-\frac{c}{a+b}-\frac{b}{a+c}}{2}\)
TA TÍNH ĐƯỢC GIÁ TRỊ NHỎ NHẤT CỦA \(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\)
=> MAX A
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
1
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le a\cdot\frac{b+1+b^2-b+1}{2}=\frac{ab^2}{2}+1\)
Tương tự ta có:\(P\le3+\frac{1}{2}\left(ab^2+bc^2+ca^2\right)\)
Giả sử b nằm giữa a và c
Ta có:
\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2-bc-ab+ac\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+bc^2+abc\)
\(\le a^2b+bc^2+2abc=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta chứng minh \(b\left(3-b\right)^2\le4\) dể chứng minh
Khi đó:\(P\le3+\frac{4}{2}=5\)
Dấu "=" xảy ra tại a=0;b=1;c=2 và các hoán vị
2
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)
\(\Rightarrow a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)
Bất đẳng thức cần chứng minh tương đương với:\(xyz\le\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8}\) ( đúng theo bđt cô si )
P/S:a,b,c không là độ dài 3 cạnh tam giác vẫn đúng theo BĐT Schur
Bài 1: em làm không đúng rồi và cô không hiểu ý tưởng làm bài của em nhưng có mấy lỗi cơ bản:
Sai dòng thứ nhất \(\frac{ab^2}{2}+a\)
Dấu bằng xảy ra cũng sai. Dòng thứ 6 em nhân cả hai vế cho a mà dấu bằng a = 0 . vô lí
Dòng thứ 5 ( b - a ) ( b - c ) <= 0 thì dấu bằng xảy ra a = b hoặc b = c chứ
Dòng thứ 8 => sau đó làm thế nào.
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé
Áp dụng BĐT Cauchy-Schwarz và Nesbitt ta có:
\(P\le\sqrt{\left(1+1+1\right)\left(3-\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\right)}\)
\(\le\sqrt{\left(1+1+1\right)\left(3-\frac{3}{2}\right)}=\frac{3\sqrt{2}}{2}\)
rõ đi bạn mình không hiểu lắm