Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)
Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)
Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).
b) Biến đổi tương đương:
\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))
\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)
\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)
\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)
\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)
\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)
Vậy có ĐPCM.
a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.
Hình vuông là trường hợp đặc biệt của hình thoi => AC//=BD và AC vuông góc với BD
AH cũng vuông góc với BD => AH trùng AC
Ta có
AC=BD
AH=CH và BH=DH
=> AH=BH=CH=DH
+ Từ Q kẻ đường vuông góc với BD cắt BD tại M mà CH cũng vuông góc với BD => QM//CH
Mà CQ=DQ
=> MQ là đường trung bình của tg CDH => MD=MH=DH/2 và MQ=CH/2
+ Xét hai tam giác vuông AHPvà tg vuông PMQ có
MQ=CH/2 và PH=BH/2 mà BH=CH => MQ=PH (1)
Ta có MP=MH+PH = DH/2+BH/2 mà BH=DH => MP=BH
mà BH=AH
=> MP=AH (2)
=> tg AHP = tg PMQ (hai cạnh góc vuông tương ứng = nhau)
=> ^HAP=^MPQ (*)
Trong tg vuông AHP có ^HAP+^APH=90 (**)
Từ (*) và (*) => ^APH+^MPQ=90 => PQ vuông góc AP