Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCIF vuông tại I và ΔCBE vuông tại B có
góc bCE chung
=>ΔCIF đồng dạg với ΔCBE
b: ΔFCD vuông tại C có CI là đường cao
nên CI^2=FI*ID
a) Vì tứ giác ABCD là hình vuông
=> \(\widehat{B}=\widehat{C}=\widehat{A}=\widehat{D}\) \(=90^0\)
Xét ΔCIF và ΔCBE có:
\(\widehat{B}=\widehat{FIC}\) \(=90^0\)
\(\widehat{C1}\) : chung
=> ΔCIF∼ΔCBE (g.g)
b) Xét ΔDIC và ΔDCF có:
\(\widehat{C}=\widehat{DIC}\) \(=90^0\)
\(\widehat{D1}\) : chung
=> ΔDIC∼ΔDCF (g.g)
=> \(\widehat{DFC}=\widehat{DCI}\) hay \(\widehat{IFC}=\widehat{DIC}\)
Xét ΔIDC và ΔICF có:
\(\widehat{DIC}=\widehat{FIC}\) \(=90^0\)
\(\widehat{IFC}=\widehat{DCI}\) (cmtrn)
=> ΔIDC∼ΔICF (g.g)
\(\Rightarrow\frac{ID}{IC}=\frac{IC}{IF}\Leftrightarrow ID.IF=IC^2\) (đpcm)
c)
1: Xét ΔCIN vuông tại I và ΔCBM vuông tại B có
\(\widehat{ICN}\) chung
Do đó: ΔCIN\(\sim\)ΔCBM
Suy ra: CI/CB=CN/CM
hay \(CI\cdot CM=CB\cdot CN\)
2: Xét ΔNCD vuông tại C có CI là đường cao
nên \(IC^2=IN\cdot ID\)
a) xét tam giác CIF và tam giác CBE:
\(\widehat{CBE}\) = \(\widehat{CIF}\)(= 90o)
\(\widehat{BCE}\) chung
=) \(\Delta\)CIF ~ \(\Delta\)CBE(g.g)
b) có AB // CD( t/c hình vuông)
=) BE// CD( E\(\in\)AB)
(=) \(\widehat{BEC}\)= \(\widehat{ECD}\)( so le trong) (1)
mà \(\Delta\)CIF~ \(\Delta\)CBE( cmt)
(=) \(\widehat{BEC=}\widehat{IFC}\)( góc t/ứ) (2)
tử (1) và(2) =) \(\widehat{ECD=}\widehat{IFC}\)
mà : \(\widehat{CIF=}\widehat{CID}\)( = 900)
=) \(\Delta IFC=\Delta ICD\)( g.g)
(=) \(\frac{IF}{IC}=\frac{IC}{ID}\)( cạnh t/ứ)
=) IC.IC= IF.ID
=) IC2= IF.ID
HÌNH BẠN TỰ VẼ NHA@