K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

1 tháng 12 2018

a: Xét ΔCIF vuông tại I và ΔCBE vuông tại B có

góc bCE chung

=>ΔCIF đồng dạg với ΔCBE

b: ΔFCD vuông tại C có CI là đường cao

nên CI^2=FI*ID

 

15 tháng 3 2020

ABCDFGEKI

a,  có : ^FAD + ^DAE = 90

^BAE + ^DAE = 90

=> ^FAD = ^BAE 

xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)

^FDA = ^EBA = 90

=> tam giác FDA = tam giác EBA (cgv-gnk)

=> AF = AB (Đn)

=> tam giác AFB cân tại A (đn)

có AI là trung tuyến

=> AI _|_ EF                (1)

xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)

FI = IE do I là trung điểm của EF (gt)

EG // FK (gT) => ^GEI = ^IFK (slt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> EG = FK (đn)

mà EG // FK (gt)

=> EGFK là hình bình hành (dh) và (1)

=> EGFK là hình thoi (dh)

b, kẻ AC

AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45     

tam giác  AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45

=> ^DAK = ^CAE 

tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)

^FAC = 90 - ^CAE

=> ^AKD = ^FAC

Xét tam giác AFK và tam giác AFC có : ^AFC chung

=> tam giác AFK đồng dạng với tam giác AFC (g-g)

=> AF/FC = FK/AF

=> AF^2 = KF.KC

c, có BD và AC là đường chéo của hình vuông ABCD 

=> B;D thuộc đường trung trực của AC (2)

xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)

xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2

=> AI = IC 

=> I thuộc đường trung trực của AC và (2)

=> B;I;D thẳng hàng 

d, Có EK = FK do EGFK là hình thoi (câu a)

FK = FD + DK

FD = BE do tam giác ABE = tam giác ADF (Câu a)

=> EK = BE + DK

có chu vi ECK = EC + KC + EK

=> chu vi ECK = EC + KC + BE + DK

= BC + DC

= 2BC 

mà BC = 6

=> Chu vi ECK = 12

20 tháng 5 2019

a) xét tam giác CIF và tam giác CBE:

\(\widehat{CBE}\) = \(\widehat{CIF}\)(= 90o)

\(\widehat{BCE}\) chung

=) \(\Delta\)CIF ~ \(\Delta\)CBE(g.g)

b) có AB // CD( t/c hình vuông)

=) BE// CD( E\(\in\)AB)

(=) \(\widehat{BEC}\)= \(\widehat{ECD}\)( so le trong) (1)

\(\Delta\)CIF~ \(\Delta\)CBE( cmt)

(=) \(\widehat{BEC=}\widehat{IFC}\)( góc t/ứ) (2)

tử (1) và(2) =) \(\widehat{ECD=}\widehat{IFC}\)

mà : \(\widehat{CIF=}\widehat{CID}\)( = 900)

=) \(\Delta IFC=\Delta ICD\)( g.g)

(=) \(\frac{IF}{IC}=\frac{IC}{ID}\)( cạnh t/ứ)

=) IC.IC= IF.ID

=) IC2= IF.ID

HÌNH BẠN TỰ VẼ NHA@leuleu