K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 12 2020

A B C D

ta có \(\overrightarrow{BC}\cdot\left(2\overrightarrow{\cdot AD}-\overrightarrow{AB}\right)=2\cdot\overrightarrow{BC}\cdot\overrightarrow{AD}-\overrightarrow{BC}\cdot\overrightarrow{AB}=2a^2\)

(Do BC và AD cùng hướng, BC và AB vuông góc với nhau)

a: vecto AB-vecto AD

=vecto DA+vecto AB

=vecto DB

-vecto CD-veco BC

=vecto CB-vecto CD

=vecto DC+vecto CB=vecto DB

=>vecto AB+vecto CD=vecto AD-vecto BC

b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)

\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)

=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)

c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)

\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

NV
17 tháng 7 2021

Không đúng, vì \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) không bằng nhau

Hai vecto bằng nhau cần thỏa mãn đồng thời 3 điều kiện: có độ dài bằng nhau, cùng phương, cùng chiều.

2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) chỉ thỏa mãn 1 trong 3 điều kiện (bằng độ dài) nên ko bằng nhau

a: \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=2\cdot AC=2\cdot5=10\)

b: \(\left|\overrightarrow{AM}+\overrightarrow{AN}\right|=\left|\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{2}+\dfrac{\overrightarrow{AD}+\overrightarrow{AC}}{2}\right|\)

\(=\left|\dfrac{3\cdot\overrightarrow{AC}}{2}\right|=\dfrac{3}{2}AC=\dfrac{3}{2}\cdot5=\dfrac{15}{2}=7.5\)

21 tháng 10 2021

a: \(\left|\overrightarrow{OA}-\overrightarrow{OC}\right|=\left|\overrightarrow{CA}\right|=AC=a\sqrt{2}\)

b: \(\left|\overrightarrow{AB}-\overrightarrow{CD}\right|=2\cdot AB=2a\)