K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có MPNQ là hình bình hành vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (1) và (2) ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh

4 tháng 6 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (3) và (4) ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh.

27 tháng 5 2017

Hình giải tích trong không gian

Hình giải tích trong không gian

8 tháng 3 2019

10 tháng 3 2017

Đáp án C

25 tháng 3 2018

Chọn A

Cách 1: Khối tứ diện ABCD được chia thành bốn tứ diện có thể tích bằng nhau.

Cách 2:

Mà M, N, P là trung điểm các cạnh BC, CD, BD nên hai tam giác BCD và MNP đồng dạng theo tỉ số

7 tháng 3 2017

Đáp án B

* Tam giác ABC có MN là đường trung bình nên MN // BC (1)

Tam giác ACD có NP là đường trung bình nên NP // CD (2)

Từ (1) và (2) suy ra: (MNP) song song mp( BCD) hay (MNP) song song mp(Oyz).

* Mà mặt phẳng (Oyz) có 1 vecto pháp tuyến là i → (1; 0; 0) nên mặt phẳng (MNP) có VTPT  i → (1; 0; 0).

* Điểm O(0; 0; 0). Gọi I(1; -2; 3) là trung điểm của AO. Suy ra; điểm I thuộc mặt phẳng (MNP).

* Phương trình mặt phẳng (MNP) là:

1(x- 1) + 0(y+ 2) + 0( z- 3) =0 hay x- 1= 0

Chọn B.

18 tháng 12 2018

Khối chóp C.BDNM có CB là đường cao nên có thể tích trong đó

+ BC = 2a

+ Tứ giác BDNM là hình thang vuông tại B, M do MN là đường trung bình của tam giác ABD nên

Thể tích của khối chóp C.BDNM là: