Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là tđiểm của AB
Q là tđiểm của AD
Do đó:MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là tđiểm của BC
P là tđiểm của CD
Do đó: NP là đường trung bình
=>NP=BD/2 và NP//BD(2)
Xét ΔABC có
M là tđiểm của AB
N là tđiểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MN=MQ
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
mà MN=MQ
nên MQPN là hình thoi
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
tam giácABC : MN là đường trung bình => MN// AC ,tam giác ADC có DP là đường trung bình => QP//AC ==> MN//QP(1) Xét r=tam giác BCD có NP là đường trung binh=> NP//BD=> GÓC MNP=90 ĐỘ(2) từ 1 và 2 => MNPQ là hình chữ nhật b) MNPQ/ABCD=1/2 C) diện tích ABCD=9.6/2=27 , diện tích MNPQ=27/2=13.5 diện tích MNB=3.375
Ta có \(S_{ABCD}=\dfrac{1}{2}AC\cdot BC=144\Rightarrow AC\cdot BD=288\)
Ta có M,N,P,Q là các trung điểm nên MN,NP,PQ,QM lần lượt là đtb \(\Delta ABC,\Delta BDC,\Delta ACD,\Delta ABD\)
Do đó \(MN=PQ=\dfrac{1}{2}BC;MN\text{//}PQ\Rightarrow MNPQ\text{ là hbh}\)
Mà \(NP\text{//}AC\Rightarrow NP\bot MN\left(AC\bot BD\right)\Rightarrow MNPQ\text{ là hcn}\)
\(\Rightarrow S_{MNPQ}=MN\cdot NP=\dfrac{1}{2}AC\cdot\dfrac{1}{2}BD=\dfrac{1}{4}\cdot288=72\left(cm^2\right)\)