Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác NPQ và tam giác HPN có:
góc PNQ=góc HPN =90 độ
góc P chung
\(\Rightarrow\Delta NPQ\infty\Delta HPN\left(g.g\right)\)
b) theo câu a) \(\Delta NPQ\infty\Delta HPN\) nên:
\(\dfrac{NP}{HP}=\dfrac{PQ}{PN}hay\dfrac{15}{HP}=\dfrac{25}{15}\Rightarrow HP=\dfrac{15\cdot15}{25}=\dfrac{225}{25}=9\left(cm\right)\)
HQ=PQ-HP=25-9=16(cm)
C1: a) CM tgBEC = tgCDB (g.c.g) => BE = CD
b) AB = AE + BE
và AC = AD + DC
mà AB = AC ; BE = DC
=> AE = AD hay tg EAD cân tại A
=> (tới đây tính E^ hoặc D^ rồi so sánh với B^ nếu E^, hoặc C^- nếu tính D^ )
chỉ ra vị trí đồng vị => song song
** tg là tam giác, KHÔNG phải tan (lượng giác)
(nói cần gấp nên đăng lần lượt - mới cho dàn bài, chưa viết bài giải, đừng k, mỏi tay)
C2: a) đồng dạng, khác là sao (là ko bằng hay gì??)
(thấy thứ tự các chữ cái trong tên tam giác ko xếp theo thứ tự đồng dạng-chắc cũng là ngụ ý cùa câu hỏi)
b) tg NQP đd tg HNP (g.g) => HP/NP = NP/QP
(đề cho số đo hết rồi, thay vào tính HP)
Ta có: HP + HQ= PQ => HQ = PQ - HP = (tự tính)
a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)
NP/NQ=12/20=3/5
b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co
góc MNH=góc NQP
=>ΔMHN đồg dạng với ΔNPQ
\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
c: Xét ΔMQN vuông tại M có MH là đường cao
nên MQ^2=QH*QN