Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\)
Mà \(\widehat{D_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{B_1}\Rightarrow\Delta ADB.cân.tại.B\)
\(\Rightarrow AD=AB=3\left(cm\right)\)
Ta có \(\widehat{ADC}=\widehat{BCD}=60^0\left(hthang.cân.ABCD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{ADC}=30^0\left(t/c.phân.giác\right)\)
Ta có \(\widehat{BDC}+\widehat{D_2}+\widehat{BCD}=180^0\Rightarrow\widehat{BDC}=180^0-30^0-60^0=90^0\)
Do đó \(\Delta BCD\) vuông tại B
\(\Rightarrow CD^2=BD^2+BC^2\left(pytago\right)\\ \Rightarrow CD^2=BD^2+AD^2\left(t/c.hthang.cân\right)\\ \Rightarrow CD^2=3^2+4^2=25\\ \Rightarrow CD=5\left(cm\right)\)
Vì EF là đtb hình thang cân ABCD nên \(EF=\dfrac{AB+CD}{2}=\dfrac{5+3}{2}=4\left(cm\right)\)
\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A
Do đó \(\widehat{ADB}=\widehat{ABD}\)
Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)
Vậy BD là p/g \(\widehat{ADC}\)
\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)
Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)
\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)
Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)