K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Ta có \(\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\)
Mà \(\widehat{D_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{B_1}\Rightarrow\Delta ADB.cân.tại.B\)
\(\Rightarrow AD=AB=3\left(cm\right)\)
Ta có \(\widehat{ADC}=\widehat{BCD}=60^0\left(hthang.cân.ABCD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{ADC}=30^0\left(t/c.phân.giác\right)\)
Ta có \(\widehat{BDC}+\widehat{D_2}+\widehat{BCD}=180^0\Rightarrow\widehat{BDC}=180^0-30^0-60^0=90^0\)
Do đó \(\Delta BCD\) vuông tại B
\(\Rightarrow CD^2=BD^2+BC^2\left(pytago\right)\\ \Rightarrow CD^2=BD^2+AD^2\left(t/c.hthang.cân\right)\\ \Rightarrow CD^2=3^2+4^2=25\\ \Rightarrow CD=5\left(cm\right)\)
Vì EF là đtb hình thang cân ABCD nên \(EF=\dfrac{AB+CD}{2}=\dfrac{5+3}{2}=4\left(cm\right)\)
quên sửa hình vẽ nhé: