K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

lại đê 

24 tháng 8 2020

đề thiếu à

25 tháng 8 2020

sao lại bị thế này nhỉ ;-; 

25 tháng 8 2020

lại đi bạn

14 tháng 10 2021

a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)

\(\widehat{IBA}=\widehat{ICD}\)

mà \(\widehat{IDC}=\widehat{ICD}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

hay ΔIAB cân tại I

b: Xét ΔIBD và ΔIAC có 

IB=IA

\(\widehat{BID}\) chung

ID=IC

Do đó: ΔIBD=ΔIAC

15 tháng 10 2021

a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)

\(\widehat{IBA}=\widehat{ICD}\)

mà \(\widehat{IDC}=\widehat{ICD}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

hay ΔIAB cân tại I

b: Xét ΔIBD và ΔIAC có 

IB=IA

\(\widehat{BID}\) chung

ID=IC

Do đó: ΔIBD=ΔIAC

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC