Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vậy khi vị trí mặt phẳng α cách đáy hình nón một khoảng h 3 thì khối trụ có diện tích lớn nhất
Đáp án A.
Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ SEF đều” (hình vẽ).
=>Bán kính đáy và chiều cao của hình trụ (T) lần lượt là
và
Thể tích khối trụ là
Ta có ∆ SEF đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của ∆ SEF.
Gọi H là trung điểm của EF thì
Hình vuông ABCD nội tiếp đường tròn (O) nên SH = 3OH = 3R
Bán kính đáy và chiều cao của hình nón (N) lần lượt là
Thể tích khối nón là
Đáp án D.
Giả sử hình nón có đỉnh S, đáy là đường tròn tâm I bán kính r, thiết diện đi qua đỉnh là ∆ SAD cân tại S.
Gọi J là trung điểm của AB, ta có
=> (SAB) ⊥ (SIJ)
Trong mặt phẳng (SIJ): Kẻ IH ⊥ (SAB) => IH = d(I;(SAB)) = 24 (cm)
Vậy= 2000 c m 2
Đáp án A.
Đường sinh của hình non (N) là
Diện tích xung quanh của hình nón (N) là S x q = πrl
Diện tích toàn phần của hình nón (N) là
= πr ( 1 + r )
Thể tích của khối nón (N) là