K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)

NP/NQ=12/20=3/5

b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co

góc MNH=góc NQP

=>ΔMHN đồg dạng với ΔNPQ

\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

c: Xét ΔMQN vuông tại M có MH là đường cao

nên MQ^2=QH*QN

1: Xét ΔMHN vuong tại H và ΔNPQ vuông tại P có

góc MNH=góc NQP

=>ΔMHN đồng dạng với ΔNPQ

2: EQ/EN=PQ/PN=HN/MH

=>EQ*MH=EN*HN

NQ có 2 lần số đo kìa bạn ơi

a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có

góc P chung

=>ΔMNP đồng dạng với ΔHIP

b: IN/IP=MN/MP=3/4

=>IN/3=IP/4=(IN+IP)/(3+4)=5/7

=>IN=15/7cm; IP=20/7cm

IH//MN

=>IH/MN=PI/PN

=>IH/3=20/7:5=4/7

=>IH=12/7cm

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)