K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNQ và ΔNQP có

\(\widehat{NMQ}=\widehat{QNP}\)

\(\widehat{MNQ}=\widehat{NQP}\)

Do đo: ΔMNQ\(\sim\)ΔNQP

b: Ta có: ΔMNQ\(\sim\)ΔNQP

nên NQ/QP=MN/NQ

hay \(NQ^2=MN\cdot PQ=9\cdot16=144\left(cm\right)\)

=>NQ=12(cm)

20 tháng 5 2017
  1. a)xét tg MOQ và tg NOP có: -góc Ở chung; OM=ON(giả thiết);OQ=OP(giả thiết)=>tg MOQ=tgNOP(cạnh.góc cạnh)
  2. b) ta có:QP (cạnh chung);MQ=NP(giả thiết);góc M=góc N(tg MOQ=tgNOP)=>tg MPQ=tg NQP
20 tháng 5 2017
  1. c) MN//PQ( vị trí so le trong)

d) vì MN//PQ(cmt)=>MNPQ là ht cân

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Xét tam giác $EDM$ và $EKQ$ có:

$\widehat{E}$ chung

$\widehat{EDM}=\widehat{EKQ}$ (hai góc đồng vị)

$\Rightarrow \triangle EDM\sim \triangle EKQ$ (g.g)

b) 

$MD\parallel QK$ nên theo định lý Talet:

$\frac{EM}{EQ}=\frac{ED}{EK}\Rightarrow EM.EK=EQ.ED$