K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMND

b: ND=căn 3^2+4^2=5cm

MH=3*4/5=2,4cm

NH=3^2/5=1,8cm

c: ME là phân giác

=>NE/DE=MN/MD=3/4

=>NE/3=DE/4

=>S MNE=3/4*S MDE

Phần a,b nha 

a)Xét tứ giác MDHE, có:

MDHˆ=900MDH^=900

Mˆ=900M^=900

HEMˆ=900HEM^=900

=> Tứ giác MDHE là hình chữ nhật

b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường

=> OH=OE

Xét tam giác EOH, có:

OH=OE(CMT)

=> Tam giác EOH cân tại O

=> H1ˆ=E1ˆH1^=E1^

Xét DEHP vuông tại E ,có:

A là trung điểm PH

=> AE = AH.

=> H2ˆ=E2ˆH2^=E2^

=> AEOˆ=AHOˆAEO^=AHO^ =900=900

Từ đó góc AEO = 900

hay tam giác DEA vuông tại E.

30 tháng 12 2021

ok thankyeu