Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có
\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)
Do đó: ΔMNH\(\sim\)ΔNQP(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:
\(NH\cdot NQ=MN^2\)
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMND
b: ND=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c: ME là phân giác
=>NE/DE=MN/MD=3/4
=>NE/3=DE/4
=>S MNE=3/4*S MDE
Phần a,b nha
a)Xét tứ giác MDHE, có:
MDHˆ=900MDH^=900
Mˆ=900M^=900
HEMˆ=900HEM^=900
=> Tứ giác MDHE là hình chữ nhật
b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường
=> OH=OE
Xét tam giác EOH, có:
OH=OE(CMT)
=> Tam giác EOH cân tại O
=> H1ˆ=E1ˆH1^=E1^
Xét DEHP vuông tại E ,có:
A là trung điểm PH
=> AE = AH.
=> H2ˆ=E2ˆH2^=E2^
=> AEOˆ=AHOˆAEO^=AHO^ =900=900
Từ đó góc AEO = 900
hay tam giác DEA vuông tại E.