Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
Do đó; ΔHNM\(\sim\)ΔMND
b: \(ND=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(MH=\dfrac{MN\cdot MD}{ND}=2.4\left(cm\right)\)
\(NH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)
a) Xét 2 tam giac vuong MHN và MPN, ta có:
\(\widehat{HMN}=\widehat{MPN}\) (cùng phụ với góc HMP)
=> \(\Delta HMN\sim\Delta MPN\left(g.g\right)\)
b) Áp dụng định lí pitago ta tính dc NP = 20 (cm)
Áp dụng tính chất đường phân giác trong tam giác MNP ta có:
\(\dfrac{DN}{DP}=\dfrac{MN}{MP}=\dfrac{12}{16}=\dfrac{3}{4}\) <=> \(\dfrac{DN}{3}=\dfrac{DP}{4}=\dfrac{DN+DP}{3+4}=\dfrac{20}{7}\)
=> DN = 60/7 (cm) và DP = 20/7 (cm)
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMND
b: ND=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c: ME là phân giác
=>NE/DE=MN/MD=3/4
=>NE/3=DE/4
=>S MNE=3/4*S MDE