Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hơi dài, c tham khảo ở đây nè https://cunghocvui.com/danh-muc/toan-lop-8
a: Xét tứ giác DBCE có
DE//CB
DE=CB
Do đó: DBCE là hình bình hành
b: Xét tứ giacs ACEF có
D là trug điểm chung của AE và CF
AE vuông góc với CF
Do đó: ACEF là hình thoi
Điểm F có lẽ hơi thừa đấy.
Bạn c/m K là trực tâm của tam giác AEC \(\Rightarrow AK\perp EC\Rightarrow AI\perp EC\Rightarrow\widehat{AIC}=90^0\)
Gọi O là giao điểm của AC và BD thì O là trung điểm của AC và BD và AC = BD
Tam giác AIC vuông tại I có IO là trung tuyến ứng với cạnh huyền AC
\(\Rightarrow IO=\frac{1}{2}AC\Rightarrow IO=\frac{1}{2}BD\)
Tam giác BID có IO là trung tuyến và \(IO=\frac{1}{2}BD\Rightarrow\Delta BID\)vuông tại I
\(\Rightarrow S_{BID}=\frac{1}{2}.BI.ID\)(1)
Chứng minh được BDEC là hình bình hành nên \(BD//CE\)
Mà \(AI\perp CE\left(cmt\right)\Rightarrow IM\perp BD\)
Tam giác BID có đường cao IM \(\Rightarrow S_{BID}=\frac{1}{2}IM.BD\) (2)
Từ (1) và (2) có: \(IM.BD=DI.BI\)
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN