Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
ABED là hình thang
SABED = \(\frac{1}{2}\)(48 + 24) . 24 = 864
AFED là hình thang. Gọi AF = x
SAFED = \(\frac{1}{2}\)(x + 24) . 24
= 12x + 288
Mặt khác SAFED = \(\frac{11}{24}\)SABED = \(\frac{864.11}{24}=396\)
Ta có 12x + 288 = 396 => x = 9
Chọn F trên cạnh AB sao cho AF = 9
a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Câu 12. Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?
A. Hình chữ nhật. B. Hình thoi. C. Hình bình hành. Câu 13. Cho hình vuông có chu vi 28 cm. Độ dài cạnh hình vuông là: | D. Hình vuông. |
A. 4cm. B. 7cm. C. 14cm. Câu 14. Cho hình vuông có chu vi 32 cm. Độ dài cạnh hình vuông là: | D. 8cm. |
A. 10cm. B. 15cm. C. 5cm. | D. 8cm. |
Câu 12. Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?
A. Hình chữ nhật. B. Hình thoi. C. Hình bình hành. D. Hình vuông.
Câu 13. Cho hình vuông có chu vi 28 cm. Độ dài cạnh hình vuông là:
A. 4cm. B. 7 cm. C. 14cm. D. 8cm.
Câu 14. Cho hình vuông có chu vi 32 cm. Độ dài cạnh hình vuông là:
A. 10cm. B. 15cm. C. 5cm. D. 8 cm
Do hình thang AEFD và hình thang BCFE có cùng đường cao, suy ra S A E F D = S B C F E ⇔ D F = A B + D C 2 − A E
Cách dựng: Vẽ đường trung bình MN, trên đó lấy MK = AE. Từ K vẽ đường song song với BC cắt CD tại F cần tìm
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)