K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Chọn C.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Gọi O là trọng tâm của tam giác ABC và M là trung điểm của BC.

- Vì hình chóp S.ABC là hình chóp tam giác đều nên: S) ⊥ (ABC); SO = a√3.

- Kẻ OH ⊥ SM, ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2) nên suy ra d(O; (SBC)) = OH.

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét tam giác vuông SOM, đường cao OH có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

12 tháng 1 2017

Đáp án A

Gọi M là trung điểm AB ,dựng OK ⊥ SM

23 tháng 3 2018

Đáp án C

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

25 tháng 1 2021

Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)

Từ gt ta có:

\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))

Khi đó SG=AG.tan60=a

Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)

Đặt d(G,(SBC))=x

Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:

\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)

\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)

25 tháng 1 2021

Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.

CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)

Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)

\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH

Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm

 

 

30 tháng 8 2017