K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

27 tháng 4 2017

Đáp án B.

Phương pháp: Tính khoảng cách từ A đến (SBC) và so sánh khoảng cách từ O đến (SBC) với khoảng cách từ A đến (SBC)

Cách giải: Tam giác ABC có góc ABC = 600 => ∆ABC đều cạnh a.

Gọi M là trung điểm của BC => AMBC. Trong mặt phẳng (SAM) kẻ AHSM ta có

Tam giác ABC đều cạnh a nên 

Ta có : 

Ta có 

9 tháng 4 2017

Đáp án D

Cách 1: Tư duy tự luận (Tính khoảng cách dựa vào hình chiếu)

Ta có 

A B // C D A B ⊄ S C D C D ⊂ S C D ⇒ A B // S C D ⇒ d B , S C D = d A ; S C D

Lại có C D ⊥ A D , A D ⊂ S A D C D ⊥ S A , S A ⊂ S A D A D ∩ S A = A ⇒ C D ⊥ S A D .

Trong mặt phẳng (SAD)  : Kẻ  A H ⊥ S D , H ∈ S D    thì C D ⊥ A H .

Suy ra A H ⊥ A C D ⇒ A H = d A ; S C D = d B ; S C D .

  Δ S A D vuông tại A nên 

1 A H 2 = 1 S A 2 + 1 A D 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Cách 2: Tư duy tự luận (Tinh khoảng cách qua công thức thể tích)

Thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a 2 = 2 a 3 3  (đvtt)

 

Do S Δ B C D = 1 2 S A B C D ⇒ V S . B C D = 1 2 V S . A B C D = a 3 3  (đvtt).

Ta có C D ⊥ S A D  (xem lại phần chứng minh ở cách 1)   ⇒ C D ⊥ S D ⇒ Δ S C D vuông tại D. Suy ra

S Δ S C D = 1 2 S D . C D = 1 2 S A 2 + A D 2 . C D = 1 2 . a . 2 a 2 + a 2 = a 2 5 2

 (đvdt)

Mặt khác 

V S . B C D = V B . S C D = 1 3 d B ; S C D . S Δ S C D ⇒ d B ; S C D = 3 V S . B C D S Δ S C D = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

27 tháng 4 2017

Đáp án D

24 tháng 6 2019

Đáp án B

3 tháng 3 2018

19 tháng 10 2019

12 tháng 6 2018

Đáp án là C

5 tháng 6 2019

Đáp án A