Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Em kiểm tra lại đề bài xem có nhầm lẫn đâu không.
Ta có CN cắt AB tại N (do N là trung điểm AB) nên không tồn tại \(d\left(CN,AB\right)\) (chỉ có khoảng cách giữa 2 đường thẳng song song hoặc chéo nhau chứ không có khoảng cách giữa 2 đường thẳng cắt nhau).
b.
Gọi E là điểm đối xứng D qua A \(\Rightarrow DE=2AD=2BC\), gọi F là trung điểm SE.
\(\Rightarrow MF\) là đường trung bình tam giác SDE \(\Rightarrow\left\{{}\begin{matrix}MF=\dfrac{1}{2}DE=BC\\MF||DE||BC\end{matrix}\right.\)
\(\Rightarrow\) Tứ giác BCMF là hình bình hành \(\Rightarrow CM||BF\)
Lại có AM là đường trung bình tam giác SDE \(\Rightarrow AM||SE\)
\(\Rightarrow\left(ACM\right)||\left(SBE\right)\Rightarrow d\left(SB,CM\right)=d\left(\left(ACM\right),\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)
Gọi H là trung điểm BE, do \(AE=AD=AB\Rightarrow\Delta ABE\) vuông cân tại A
\(\Rightarrow AH\perp BE\Rightarrow BE\perp\left(SAH\right)\)
Trong mp (SAH), từ A kẻ \(AK\perp SH\) \(\Rightarrow AK\perp\left(SBE\right)\)
\(\Rightarrow AK=d\left(A;\left(SBE\right)\right)=d\left(SB,CM\right)\)
\(AH=\dfrac{1}{2}BE=\dfrac{1}{2}\sqrt{AB^2+AE^2}=\dfrac{a\sqrt{2}}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông SAH:
\(AK=\dfrac{SA.AH}{\sqrt{SA^2+AH^2}}=\dfrac{a\sqrt{21}}{7}\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\) (1)
Tam giác SAB vuông cân tại A (do SA=SB=a)
\(\Rightarrow AM\perp SB\) (trung tuyến đồng thời là đường cao) (2)
(1);(2)\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\)
Hoàn toàn tương tự ta có \(AN\perp SC\)
\(\Rightarrow SC\perp\left(AMN\right)\Rightarrow\left(SAC\right)\perp\left(AMN\right)\)
Từ A kẻ \(AH\perp SC\Rightarrow H\in\left(AMN\right)\)
Lại có \(SA\perp\left(ABCD\right)\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)
\(\Rightarrow\widehat{HAC}\) là góc giữa (AMN) và (ABCD)
\(AC=a\sqrt{2}\) ; \(SC=a\sqrt{3}\)
\(sin\widehat{HAC}=cos\widehat{SCA}=\dfrac{AC}{SC}=\sqrt{\dfrac{2}{3}}\Rightarrow\widehat{HAC}\approx54^044'\)
+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)
+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)
+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC
Chọn đáp án A