Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là D
+ Gọi O là giao điểm của AC,BD
⇒ MO \\ SB ⇒ SB \\ ACM
⇒ d SB,ACM = d B,ACM = d D,ACM .
+ Gọi I là trung điểm của AD ,
M I \ \ S A ⇒ M I ⊥ A B C D d D , A C M = 2 d I , A C M .
+ Trong ABCD: IK ⊥ AC (với K ∈ AC ).
+ Trong MIK: IH ⊥ MK (với H ∈ MK ) (1) .
+ Ta có: AC ⊥ MI ,AC ⊥ IK ⇒ AC ⊥ MIK
⇒ AC ⊥ IH (2) .
Từ 1 và 2 suy ra
IH ⊥ ACM ⇒ d I ,ACM = IH .
+ Tính IH ?
- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .
- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4
⇒ I H = a a 2 4 a 2 + a 2 8 = a 3
Vậy d S B , A C M = 2 a 3 .
Lời giải khác
Đáp án D.
Trong mp A B C D gọi O là giao điểm của AC và BD.
Trong mặt phẳng S A C , qua O kẻ đường thẳng vuông góc với SC, cắt SC tại H.
Ta có B D ⊥ A C B D ⊥ S A ⇒ B D ⊥ S A C ⇒ B D ⊥ O H ⇒ O H là đường vuông góc chung của hai đường thẳng SC và BD.
Lại có A C = a 2 ⇒ C S = S A 2 + A C 2 = a 2 + 2 a 2 = 3 a 2 = a 3 .
Hai tam giác COH và CSA đồng dạng với nhau. Suy ra
O H S A = C O C S ⇒ O H = S A . C O C S = a . a 2 2 a 3 = a 6 6
Vậy khoảng cách giữa hai đường thẳng SC và BD bằng a 6 6 .
Chọn đáp án D.
Đáp án D
Dựng
Dựng
Khi đó Cx cắt AB tại E và AK tại I suy ra BI là đường trung bình của ∆AEK ( Do BD qua trung điểm O của AC)
Ta có:
Do
Cách 1:
Gọi I là trung điểm của cạnh AD.
∆ A B C vuông cân tại B, ∆ I C D vuông cân tại I và có AB=IC=a nên A C = C D = a 2
Khi đó A C 2 + C D 2 = A D 2 nên ∆ A C D vuông cân tại C.
Trong (ABCD), dựng hình vuông ACDE. Trong ∆ S A E , kẻ A H ⊥ S E ( 1 )
Ta có
E D ⊥ S A E D ⊥ A E ⇒ E D ⊥ ( S A E ) ⇒ E D ⊥ A H ( 2 )
Từ (1) và (2) suy ra A H ⊥ ( S D E )
Vì A C / / E D nên
d A C , S D = d A C , S D E = d A ; S D E = A H
Trong ∆ S A E , 1 A H 2 = 1 S A 2 + 1 A E 2
⇔ A H = S A . A E S A 2 = A E 2 ⇔ A H = a . a . 2 a 2 + a 2 ) 2 = 6 a 3
Vậy d A C , S D = 6 a 3
Cách 2:
Dễ thấy D C ⊥ ( S A C ) . Trên mặt phẳng (ABCD)
dựng: A G / / C D , D G / / A C , D G ∩ A B = E
Dễ dàng chứng minh được: S.AED là tam diện vuông (1)
Tính được: AE=AD=2a.
Mà A C / / ( S D E )
⇒ d A C , S D = d A C , S D E = d A , S D E = A H
Với AH là đoạn thẳng dựng từ A vuông góc với mặt phẳng (ADE)
Ta có: 1 A H 2 = 1 S A 2 + 1 A E 2 + 1 A D 2
⇒ A H = 6 a 3
Cách 3:
Gắn hệ trục tọa độ Oxyz
Khi đó A ( 0 ; 0 ; 0 ) ; C ( a ; a ; 0 ) ;
D ( 0 ; 2 a ; 0 ) ; S ( 0 ; 0 ; a )
Do đó A C ⇀ = ( a ; a ; 0 ) ; S D ⇀ = ( 0 ; 2 a ; - a ) ; S A ⇀ = ( 0 ; 0 ; - a ) ;
và A C ⇀ ; S D ⇀ = ( - a ; a ; 2 a )
Ta có d A C , S D = A C ⇀ ; S D ⇀ . S A ⇀ A C ; ⇀ S D ⇀
= - a . 0 + a . 0 + 2 a . ( - a ) - a 2 + a 2 + 2 a 2 = 6 a 3
Chọn đáp án C.
Đáp án là B