K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

24 tháng 12 2021

2 tháng 5 2017

 

Đáp án A

 

∆ DCM là tam giác đều cạnh a

=> SH ⊥ (ABCD) với H là tâm của  ∆ DCM

Do đó (SA;(ABCD))

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

NV
31 tháng 3 2023

a. Em kiểm tra lại đề bài xem có nhầm lẫn đâu không.

Ta có CN cắt AB tại N (do N là trung điểm AB) nên không tồn tại \(d\left(CN,AB\right)\) (chỉ có khoảng cách giữa 2 đường thẳng song song hoặc chéo nhau chứ không có khoảng cách giữa 2 đường thẳng cắt nhau).

b.

Gọi E là điểm đối xứng D qua A \(\Rightarrow DE=2AD=2BC\), gọi F là trung điểm SE.

\(\Rightarrow MF\) là đường trung bình tam giác SDE \(\Rightarrow\left\{{}\begin{matrix}MF=\dfrac{1}{2}DE=BC\\MF||DE||BC\end{matrix}\right.\)

\(\Rightarrow\) Tứ giác BCMF là hình bình hành \(\Rightarrow CM||BF\)

Lại có AM là đường trung bình tam giác SDE \(\Rightarrow AM||SE\)

\(\Rightarrow\left(ACM\right)||\left(SBE\right)\Rightarrow d\left(SB,CM\right)=d\left(\left(ACM\right),\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Gọi H là trung điểm BE, do \(AE=AD=AB\Rightarrow\Delta ABE\) vuông cân tại A

\(\Rightarrow AH\perp BE\Rightarrow BE\perp\left(SAH\right)\)

Trong mp (SAH), từ A kẻ \(AK\perp SH\) \(\Rightarrow AK\perp\left(SBE\right)\)

\(\Rightarrow AK=d\left(A;\left(SBE\right)\right)=d\left(SB,CM\right)\)

\(AH=\dfrac{1}{2}BE=\dfrac{1}{2}\sqrt{AB^2+AE^2}=\dfrac{a\sqrt{2}}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SAH:

\(AK=\dfrac{SA.AH}{\sqrt{SA^2+AH^2}}=\dfrac{a\sqrt{21}}{7}\)

NV
31 tháng 3 2023

loading...

10 tháng 7 2018