K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Đáp án C

Gọi M là trung điểm của BC. Trong mặt phẳng (SAM), kẻ đường trung trực của đoạn thẳng SA , qua điểm M kẻ đường thẳng song song với SA , hai đường thẳng đó cắt nhau tại O .

Dễ dàng chứng minh được O là tâm mặt cầu ngoại tiếp chóp S.ABC .

17 tháng 12 2018

26 tháng 1 2019

6 tháng 8 2017

Đáp án đúng : B

23 tháng 5 2018

Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

7 tháng 9 2019

Gọi G là trọng tâm của tam giác đều ABC, suy ra G là tâm đường tròn ngoại tiếp DABC

Trục của đường tròn ngoại tiếp DABC cắt mặt phẳng trung trực của cạnh bên SA tại tâm I của mặt cầu ngoại tiếp hình chóp S.ABC. Tính

26 tháng 3 2017

Chọn đáp án C

Vậy hai điểm cùng nhìn cạnh dưới một góc vuông. Điều đó chứng tỏ SC là đường kính của mặt cầu ngoại tiếp hình chóp. Do đó bán kính

9 tháng 11 2018

1 tháng 2 2017

Đáp án D

Gọi M là trung điểm của BC. Suy ra M là tâm đường tròn ngoại tiếp tam giác vuông ABC. Kẻ đường thẳng D đi qua M và vuông góc với mặt phẳng (ABC), D chính là trục của đường tròn ngoại tiếp đa giác đáy.

Trong mặt phẳng chứa SA và D, dựng đường trung trực d của SA.  d ∩ D = O

 

do đó O là tâm mặt cầu ngoại tiếp hình chóp SABC

 

24 tháng 5 2019

Ta có S A ⊥ A B C A C ⊂ A B C

⇒ S A ⊥ A C

S A ⊥ A B C A B ⊥ B C

⇒ S B ⊥ B C . Tâm I của mặt cầu là trung điểm của cạnh huyền SC.

Bán kính: R = SI = S C 2

S A 2 + A C 2 2 = a 2 + a 2 + a 2 2 = a 3 2

Đáp án D