Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S A ⊥ A B C A C ⊂ A B C
⇒ S A ⊥ A C
S A ⊥ A B C A B ⊥ B C
⇒ S B ⊥ B C . Tâm I của mặt cầu là trung điểm của cạnh huyền SC.
Bán kính: R = SI = S C 2
S A 2 + A C 2 2 = a 2 + a 2 + a 2 2 = a 3 2
Đáp án D
Đáp án C.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với mặt phẳng (ABC) thì mặt cầu ngoại tiếp hình chóp S.ABC có bán kính r = 1 2 . S A 2 + A B 2 + A C 2 . Với giả thiết của bài toán, ta có r = a 6 2 .
Phân tích phương án nhiễu:
Phương án A: Sai do HS nhớ đúng công thức tính r = 1 2 . S A 2 + A B 2 + A C 2 nhưng lại biến đổi nhầm x 2 + y 2 + z 2 = x + y + z .
Phương án B: Sai do HS có thể gắn hệ trục tọa độ Oxyz vào hình chóp (A trùng với O và B, C, S lần lượt thuộc các tia Ox, Oy, Oz) và nhầm rằng tâm của mặt cầu chính là trọng tâm G a 3 ; a 2 3 ; a 3 3 của tam giác ABC nên tính được r = O G = a 6 3 .
Phương án D: Sai do HS nhớ nhầm công thức r = 1 2 . S A 2 + A B 2 + A C 2 thành r = S A 2 + A B 2 + A C 2 .
Đáp án C
Gọi M là trung điểm của BC. Trong mặt phẳng (SAM), kẻ đường trung trực của đoạn thẳng SA , qua điểm M kẻ đường thẳng song song với SA , hai đường thẳng đó cắt nhau tại O .
Dễ dàng chứng minh được O là tâm mặt cầu ngoại tiếp chóp S.ABC .
Bán kính mặt cầu ngoại tiếp tứ diện vuông S.ABC đỉnh A là
R = A S 2 + A B 2 + A C 2 4 = 5 2
Chọn đáp án A.
Chọn đáp án A