K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

23 tháng 10 2019

ĐÁP ÁN: B

25 tháng 11 2019

 

Chọn D.

Áp dụng công thức tìm nhanh bán kính mặt cầu ngoại tiếp hình chóp R 2 = x 2 + r 2 với

r là bán kính đường tròn ngoại tiếp đa giác đáy

x = S O 2 - r 2 2 h : S là đỉnh hình chóp , O là tâm đường tròn ngoại tiếp đa giác đáy, h là chiều cao hình chóp

Cụ thể vào bài toán:

Đáy là tam giác CMN vuông tại C

Tâm O của đường tròn ngoại tiếp tam giác CMN là trung điểm MN

Áp dụng công thức đường trung tuyến trong tam giác HMN tính được  H O 2 = 5 a 2 8

Trong tam giác vuông SHO có

 

 

20 tháng 4 2018

Đáp án B.

Gọi H là trung điểm AB, G là trọng tâm tam giác ABC, K là trung điểm SC.

Ta có:  

SH = SC => HK  là trung trực SC. Qua O kẻ trục d//SH => d ⊥ (ABC)

Gọi

=> I là tâm mặt cầu ngoại tiếp hình chóp SABC

Ta có

Xét ∆ HIG vuông tại G: 

Vậy thể tích khối cầu ngoại tiếp hình chóp 

2 tháng 1 2019

Đáp án B

8 tháng 6 2018

10 tháng 2 2019

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

Gọi K là trung điểm của SA
=>KM//SC

=>SC//(KMB)

d(SC;BM)=d(S;(KBM))=SK/SA*d(A;(KBM))=d(A;(KBM))

=>ΔABC đều

=>BM vuông góc AC

=>BM vuông góc (SAC)

Kẻ AQ vuông góc KM

=>AQ vuông góc (KMB)

=>d(A;(KMB))=AQ

\(SC=\sqrt{9a^2+4a^2}=a\sqrt{13}\)

KM=1/2SC=a*căn 3/2

=>\(AQ=\dfrac{3\sqrt{13}}{13}\)

=>d(BM;SC)=3*căn 13/13