Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S A ⊥ A B C ⇒ A B là hình chiếu của SB lên(ABC) .
Dựng hình bình hành ACBD.
Ta có
Do tam giác ABC đều
Ta có:
Trong (SAM) kẻ
Xét tam giác vuông SAB ta có
Áp dụng hệ thức lượng trong tam giác vuông SAM ta có:
Chọn A.
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Xác định được
Do M là trung điểm của cạnh AB nên
Tam giác vuông SAM, có
Chọn B.
Đáp án A.
Ta có S C H ^ = 60 ° và
H C = a 7 3 ; S H = H C tan S C H ^ = a 21 3
Từ A kẻ tia A x / / C B (như hình vẽ). Khi đó B C / / S A x và do B A = 3 2 H A nên
d B C , S A = d B C , S A x = d B , S A x = 3 2 d H , S A x
Gọi N và K lần lượt là hình chiếu vuông góc của H trên Ax và SN.
Do A N ⊥ S H N và H K ⊥ S N nên H K ⊥ S A N . Khi đó d B C , S A = 3 2 H K .
Ta có
A H = 2 a 3 ; H N = A H sin N A H ^ = a 3 3 .
Suy ra H K = H N . H S H N 2 + H S 2 = a 42 12 . Vậy d B C , S A = a 42 8 .
Đáp án C
S A ⊥ A B C ⇒ A B là hình chiếu vuông góc của SB lên A B C
⇒ S B , A B C ^ = S B , A B ^ = S B A ^ = 60 ° ⇒ S A = A B . tan 60 ° = a 3
Dựng d qua B và d / / A C
Dựng A K ⊥ d tại K
Dựng A H ⊥ S K tại H
Ta có B K ⊥ A K B K ⊥ S A ⇒ B K ⊥ S A K ⇒ B K ⊥ A H
+ B K ⊥ A H S K ⊥ A H ⇒ A H ⊥ S B K ⇒ d A , S B K = A H
+ B K / / A C S K ⊂ S B K A C ⊄ S B K ⇒ A C / / S B K ⇒ d A C , S B = d A , S B K = A H
Gọi M là trung điểm A C ⇒ B M ⊥ A C 1 ; B K ⊥ A K B K / / A C ⇒ A K ⊥ A C 2
1 , 2 ⇒ A K / / B M ⇒ A K B M là hình bình hành ⇒ A K = B M = a 3 2
Xét tam giác SAK vuông tại A ta có 1 A H 2 = 1 A K 2 + 1 S A 2 = 5 3 a 2 ⇒ A H = a 15 5
Vậy d A C , S B = a 15 5