K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

\(V=\dfrac{a.a\sqrt{3}.a\sqrt{2}}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290-cos^260-cos^2120}=\dfrac{a^3\sqrt{3}}{6}\)

22 tháng 8 2017

Đáp án D

1 tháng 6 2018

Đáp án A

 

Gọi H là hình chiếu của S lên (SAB) suy ra H là tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng công thức Hê – rông, tính được  

Thể tích khối chóp:

Phương án nhiễu.

 

B. Chưa nhân 1/3.

23 tháng 10 2019

ĐÁP ÁN: B

1:

a: BC vuông góc BA

BC vuông góc SA

=>BC vuông góc (SAB)

b: Kẻ BK vuông góc AC, BH vuông góc SK

=>BH=d(B;(SAC))

\(AC=\sqrt{BA^2+BC^2}=5a\)

AK=(4a)^2/5a=3,2a

BK=4a*3a/5a=2,4a

\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)

SK=căn 2a^2+10,24a^2=a*3căn 34/5

BK=2,4a

SK^2+BK^2=SB^2

nên ΔSKB vuông tại K

=>K trùng với H

=>d(B;(SAC))=BK=2,4a

14 tháng 2 2017

ĐÁP ÁN: A 

NV
11 tháng 6 2020

1B ; 2D;

3. Trong mp (SBC), từ S kẻ \(SH\perp BC\) (1)

\(\left\{{}\begin{matrix}SA\perp SC\\SA\perp SB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(SBC\right)\Rightarrow SA\perp BC\) (2)

(1); (2) \(\Rightarrow BC\perp\left(SAH\right)\)

Mà BC là giao tuyến của (SBC) và (ABC)

\(\Rightarrow\widehat{SHA}\) là góc giữa (SBC) và (ABC)

\(\frac{1}{SH^2}=\frac{1}{SB^2}+\frac{1}{SC^2}\Rightarrow SH=\frac{SB.SC}{\sqrt{SB^2+SC^2}}=\frac{a\sqrt{6}}{3}\)

\(\Rightarrow tan\widehat{SHA}=\frac{SA}{SH}=\frac{\sqrt{6}}{2}\)

\(\Rightarrow\widehat{SHA}\approx50^046'\)

20 tháng 6 2018

Đáp án C

27 tháng 10 2017

Đáp án C