Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(V=\dfrac{a.a\sqrt{3}.a\sqrt{2}}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290-cos^260-cos^2120}=\dfrac{a^3\sqrt{3}}{6}\)
Đáp án A
Gọi H là hình chiếu của S lên (SAB) suy ra H là tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng công thức Hê – rông, tính được
Thể tích khối chóp:
Phương án nhiễu.
B. Chưa nhân 1/3.
1:
a: BC vuông góc BA
BC vuông góc SA
=>BC vuông góc (SAB)
b: Kẻ BK vuông góc AC, BH vuông góc SK
=>BH=d(B;(SAC))
\(AC=\sqrt{BA^2+BC^2}=5a\)
AK=(4a)^2/5a=3,2a
BK=4a*3a/5a=2,4a
\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)
SK=căn 2a^2+10,24a^2=a*3căn 34/5
BK=2,4a
SK^2+BK^2=SB^2
nên ΔSKB vuông tại K
=>K trùng với H
=>d(B;(SAC))=BK=2,4a
1B ; 2D;
3. Trong mp (SBC), từ S kẻ \(SH\perp BC\) (1)
\(\left\{{}\begin{matrix}SA\perp SC\\SA\perp SB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(SBC\right)\Rightarrow SA\perp BC\) (2)
(1); (2) \(\Rightarrow BC\perp\left(SAH\right)\)
Mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SHA}\) là góc giữa (SBC) và (ABC)
\(\frac{1}{SH^2}=\frac{1}{SB^2}+\frac{1}{SC^2}\Rightarrow SH=\frac{SB.SC}{\sqrt{SB^2+SC^2}}=\frac{a\sqrt{6}}{3}\)
\(\Rightarrow tan\widehat{SHA}=\frac{SA}{SH}=\frac{\sqrt{6}}{2}\)
\(\Rightarrow\widehat{SHA}\approx50^046'\)
Đáp án D
Gọi D, E, F lần lượt trên SA, SB, SC sao cho SD = SE = SF = 1 => S.DEF là hình chóp đều cạnh a
Ta có
Lại có
Vậy