Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)
a) Chứng minh ΔAED=ΔCFB
b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF
a , ta có:AE//CF (vì cùng vuông góc vsBD)
=> góc FCO= góc EAO (vì so le trong )
OA = OC (theo t/c hình bh )
xét 2 tam giác vuông OAE và OCF có:
góc FOC = góc EAO ( cm trên )
OA = OC (cmt)
=>tg OAE = tg OCF (cạnh huyền - góc nhọn )
=>OE = OF ( 2 cạnh tương ứng )
b. ta có : AE// CF ( theo a ) (1)
AE = CF ( vì tg OAE= tg OCF ( theo a )) (2)
từ (1) và (2) => AECF là hbh
( hi vọng đúng !!)
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)