K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

A B C D E F K I O

a) + Tứ giác ABCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}AB//CD\\AO=CO\end{cases}}\)

Tứ giác AECF có : \(\hept{\begin{cases}AE//CF\\AE=CF\end{cases}}\)

=> Tứ giác AECF là hình bình hành

=> AC và EF cắt nhau tại trung điểm của mỗi đường

=> O là trung điểm của EF

=> E đối xứng với F qua O

b) + Tứ giác ABCD là hình bình hành

=> AB = CD         => AB - AE = CD - CF

=> BE = DF

Tứ giác BEDF có : \(\hept{\begin{cases}BE=DF\\BE//DF\end{cases}}\)

=> tứ giác BEDF là hình bình hành

=> DE // BF

+ Tứ giác IEKF có : \(\hept{\begin{cases}IE//KF\\IF//KE\end{cases}}\)

=> tứ giác IEKF là hình bình hành

=> IK và EF cắt nhau tại trung điểm mỗi đường

=> O là trung điểm của IK

=> I đối xứng với K qua O

25 tháng 9 2022

Sai rồi

a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có

AD=DC

AE=DF

=>ΔAED=ΔDFC

=>FC=DE

b: Xét tứ giác DQPF có

I là trung điểm chung của DP và QF

DP vuông góc DF

=>DQPF là hình thoi

10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.