K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: Xét ΔEAD và ΔEBF có

góc EAD=góc EBF

góc AED=góc BEF

=>ΔEAD đồng dạng với ΔEBF

15 tháng 5 2023

1.

GT   ABCD là hbh

       AB = 12cm; BC = 7cm

       AE = 8cm, E ∈ AB

       DE cắt CB tại F

________________________

KL   ∆EAD ∾ ∆EBF

2. Xét ΔEAD và ΔEBF ta có:

\(\widehat{AED}=\widehat{FEB}\left(đđ\right)\\ \widehat{DAE}=\widehat{EBF}\left(sole.trong\right)\)

⇒ΔEAD ∼ ΔEBF (g-g)

Đề bài yêu cầu tính hay làm gì á bạn?

15 tháng 5 2023

Viết Gt, Kl và chứng minh ∆EAD ∾ ∆EBF

a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

BC=15^2/9=25(cm)

\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

c: CE/CB=CF/CA

góc C chung

=>ΔCEF đồng dạng với ΔCBA

=>góc CFE=góc CAB=90 độ

=>ΔCEF vuông tại F

d: CE/CB=CF/CA

=>CE*CA=CF*CB

16 tháng 3 2021

Tự vẽ hình , mình không có điện thoại chụp

a) Ta có : CE = CD - DE = 6 - 4 = 2 ( cm)

Xét tam giác AED và tam giác FEC có :

 Góc AED = góc FEC ( 2 góc đối đỉnh )

ADE = FCE( 2 góc so le trong )

=> tg AED đồng dạng với tam giác FEC  (g-g)

=> ED/EC = AD/FC ( 2 cặp cạnh tương ứng tỉ lệ)

hay 4/2 = 8/CF

=> CF = 4 ( cm)

16 tháng 3 2021

Tự vẽ hình , mình không có điện thoại chụp
a) Ta có : CE = CD - DE = 6 - 4 = 2 ( cm)
Xét tam giác AED và tam giác FEC có :
 Góc AED = góc FEC ( 2 góc đối đỉnh )
ADE = FCE( 2 góc so le trong )
=> tg AED đồng dạng với tam giác FEC  (g-g)
=> ED/EC = AD/FC ( 2 cặp cạnh tương ứng tỉ lệ)
hay 4/2 = 8/CF
=> CF = 4 ( cm)

1 tháng 5 2017

a) Áp dụng định lí: Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác mới đồng dạng với tam giác đã cho.

ΔFCD có EB // CD (E ∈ FD, B ∈ FC)

⇒ ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔFDC (1)

ΔAED có FB // AD (F ∈ DE, B ∈ AE)

⇒ ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔDEA (2)

Từ (1) và (2) suy ra: ΔDEA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔFDC (tính chất)

b) AB = 12cm, AE = 8cm

⇒ EB = AB – AE = 12 - 8 = 4cm.

Vì ABCD là hình bình hành nên AD = BC = 7cm

Do ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔDEA

Giải bài 43 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ EF = 5cm, BF = 3,5cm.

20 tháng 1 2017

a) Áp dụng định lí: Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác mới đồng dạng với tam giác đã cho.

ΔFCD có EB // CD (E ∈ FD, B ∈ FC)

⇒ ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔFDC (1)

ΔAED có FB // AD (F ∈ DE, B ∈ AE)

⇒ ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔDEA (2)

Từ (1) và (2) suy ra: ΔDEA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔFDC (tính chất)

b) AB = 12cm, AE = 8cm

⇒ EB = AB – AE = 12 - 8 = 4cm.

Vì ABCD là hình bình hành nên AD = BC = 7cm

Do ΔFEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔDEA

Giải bài 43 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ EF = 5cm, BF = 3,5cm.

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0

a: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

HC=12^2/9=16cm

CA=căn 16*25=20cm

c: CF/CA=4/20=1/5

CE/CB=5/25=1/5

=>CF/CA=CE/CB

=>ΔCFE đồng dạng với ΔCAB

=>góc CFE=90 độ

=>ΔCFE vuông tại F