K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

a: Xét tứ giác AECK có

AK//EC

AK=EC

Do đó: AECK là hình bình hành

23 tháng 11 2021

a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)

Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)

\(\Rightarrow AK=CE\) và \(AK//CE\)

=> AECK là hình bình hành

b) Ta có: O là giao điểm 2 đường chéo AC và BD

=> O là trung điểm AC

=> O là trung điểm KE(AECK là hình bình hành)

=> E,O,K thẳng hàng

 

 

16 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

24 tháng 11 2021

a. Vì ABCD là hbh nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AK=BK=EC=ED\)

Mà AB//CD nên AK//CE

Vậy AECK là hbh

b. Vì ABCD là hbh mà O là giao của AC và BD nên O là trung điểm AC và BD

Mà AECK là hbh nên O cũng là trung điểm EK

Vậy E,O,K thẳng hàng

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)