K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

a+b+c=1 => (a+b+c)2=1

=>a2+b2+c2+2(ab+bc+ca)=1

=>1+2(ab+bc+ca)=1

=>ab+bc+ca=0

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(A=xy+yz+zx=akbk+bkck+ckak=k^2\left(ab+bc+ca\right)=0\)

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

26 tháng 12 2017

Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì

Ta có:\(xy+yz+zx+x+y+z\)

\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)

\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)

\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)

\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)

Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:

\(xy+yz+zx+x+y+z\)

\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)

\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)

\(=-1\)

Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c

12 tháng 12 2018

Chieu nha

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

15 tháng 6 2017

\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)

=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)

=>\(x+y+z\ge3\)

Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)

=>TS/MS \(\ge1\)

=>A\(\ge1\)

Dấu = khi x=y=z=1

5 tháng 6 2017

bn có cách giải chưa

bày mk vs

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z