Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)
Study ưell
Không chắc
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì
Ta có:\(xy+yz+zx+x+y+z\)
\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)
\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)
\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)
\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)
Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:
\(xy+yz+zx+x+y+z\)
\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=-1\)
Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c