K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

 pt hoành độ giao điểm của \(\left(P\right):y=x^2\) và \(\left(d\right):y=2x+3\) là \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\) \(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\).

 Khi \(x=3\) thì \(y=x^2=9\), khi \(x=-1\) thì \(y=x^2=1\). Do đó (P) cắt (d) tại \(A\left(3;9\right)\) và \(B\left(-1;1\right)\). Từ đó dễ dàng suy ra \(C\left(3;0\right)\) và \(D\left(-1;0\right)\). Từ đó suy ra \(CD=4\).

  Lại có \(AC=1;BD=9\). Do đó \(S_{ABCD}=\dfrac{\left(AC+BD\right).CD}{2}=\dfrac{\left(1+9\right).4}{2}=20\) (đơn vị diện tích)

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=2x+3\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{9;1\right\}\end{matrix}\right.\)

b: A(3;9) B(-1;1)

\(OA=\sqrt{3^2+9^2}=3\sqrt{10}\)

\(OB=\sqrt{\left(-1\right)^2+1^2}=\sqrt{2}\)

\(AB=\sqrt{\left(-4\right)^2+\left(-8\right)^2}=4\sqrt{5}\)

\(\Leftrightarrow P=\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\)

\(S=\sqrt{\dfrac{3\sqrt{10}-\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{-3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}-4\sqrt{5}}{2}}\)

\(=\sqrt{\dfrac{576}{16}}=\dfrac{24}{4}=6\)

PTHĐGĐ là:

x^2-2x-3=0

=>x=3 hoặc x=-1

=>A(3;9); B(-1;1)

d(A;Ox)=AD

=>D(3;0)

C là hình chiếu của B lên trục Ox nên C(-1;0)

=>ABCD là hình thang vuông

AD=9; BC=1; OD=3; OC=1

=>S ABCD=(9+1)*(3+1):2=20