Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : làm tương tự với bài 2;3 nhé
Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)
\(\Rightarrow f\left(1\right)=a+b=1\)
\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)
\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)
Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)
\(f\left(0\right)=2010\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a+b+2010=2011\Rightarrow a+b=1\left(1\right)\)
\(f\left(-1\right)=2012\Rightarrow a-b+2010=2012\Rightarrow a-b=2\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)a=1,5 ; b= \(-0,5\)
\(\Rightarrow f\left(-2\right)=1,5\times\left(-2\right)^2+\left(-0,5\right)\times\left(-2\right)+2010=2005\)
f(0)=a0+b0+c=2010
=>c=2010
f(1)=a1+b1+c=a1+b1+2010
=>a+b=1 (1)
f(-1)=a1+(-b1)+c=a1-b1+2010
=>a-b=2 (2)
Từ (1) và (2) => a=(2+1):2=1,5
b=(1-2):2=-0,5
Vậy f(2)=1,5.2+(-0,5)x2+2010=2014
f(x) = ax2 + bx + c
f(0) = a.02 + b.0 + c = 2010 <=> c = 2010
f(1) = a.12 + b.1 + c = 2011 <=> a + b = 2011 - 2010 = 1
f(2) = a.22 + 2b + c = 2012 <=> 4a + 2b + c = 2012
Có 4a + 2b + c = 2012
<=> 2a + 2(a + b) + c = 2012
<=> 2a + 2 + 2010 = 2012
<=> a = 0
Với a = 0
=> b = 1
Vậy a = 0 ; b = 1 ; c = 2010
\(f\left(0\right)=c=2010\)
\(f\left(1\right)=a+b+2010=2011\Rightarrow a+b=1\)(1)
\(f\left(-1\right)=a-b+2010=2012\Rightarrow a-b=2\)(2)
Từ (1) và (2) => a = 3/2; b = -1/2.
Vậy \(f\left(-2\right)=\frac{3}{2}\left(-2\right)^2-\frac{1}{2}\left(-2\right)+2010=6+1+2010=2017\)