Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)
\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)
Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
bài 1,sai đề
bài 2:\(\frac{y+z-x}{x}=\frac{x+z-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+x+z-y+x+y-z}{z+y+x}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x\Rightarrow y+z=2x\)
\(x+z-y=y\Rightarrow x+z=2y\)
\(x+y-z=z\Rightarrow x+y=2z\)
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}=\frac{2z.2y.2x}{xyz}=2.2.2=8\)
\(\left\{{}\begin{matrix}f\left(0\right)=2014\Rightarrow c=2014\left(1\right)\\f\left(1\right)=2015\Rightarrow a+b+c=2015\left(2\right)\\f\left(-1\right)=2017\Rightarrow a-b+c=2017\left(3\right)\end{matrix}\right.\)
\(f\left(-2\right)=4a-2b+c\)
Lấy (3) nhân 3 công (2) trừ (1) nhân 2
\(f\left(-2\right)=4a-2b+c=3.2017+2015-3.2014\)
\(f\left(-2\right)=3\left(2017-2014\right)+2015=2024\)
Ta có: f(0) = a.02 + b.0 + c = 2
=> c = 2
f(1) = a.12 + b.1 + c = 1
=> a + b + c = 1 => a + b = 1 - c = 1 - 2 = -1 (1)
f(-2) = a.(-2)2 + b.(-2) + c = 2
=> 4a - 2b = 2 - c = 2 - 2 = 0
=> 2a - b = 0 (2)
Từ (1) và (2) cộng vế theo vế:
(a + b) + (2a - b) = -1
=> 3a = -1
=> a = -1/3
=> b = -1 - a = -1 + 1/3 = -2/3
Vậy ....
f(0)=a0+b0+c=2010
=>c=2010
f(1)=a1+b1+c=a1+b1+2010
=>a+b=1 (1)
f(-1)=a1+(-b1)+c=a1-b1+2010
=>a-b=2 (2)
Từ (1) và (2) => a=(2+1):2=1,5
b=(1-2):2=-0,5
Vậy f(2)=1,5.2+(-0,5)x2+2010=2014