Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Đặt .
Vìliên tục trên đoạn nên liên tục trên .Ta xét các trường hợp sau:
+ Với .
Ta có: .
Suy ra phương trình có ít nhất một nghiệm trên khoảng .
Vậy A sai.
+ Với .
Ta có: .
Suy ra phương trình có ít nhất một nghiệm trên khoảng .
Vậy B đúng, D sai.
+ Với .
Ta có: Suy ra không là nghiệm của phương trình hay .
Vậy C sai.
Đáp án là B
Từ đồ thị hàm số và phương trình f(x) = 1 có ba số thực a,b,c thỏa
-1 < a < 1 < b < 2 < c sao cho f(a) = f(b) = f(c) = 1. Do đó,
Dựa vào đồ thị hàm số y = f(x) ta có:
Do -1 < a < 1 nên đường thẳng y = a cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt. Do đó, f(x) = a có 3 nghiệm phân biệt.
Ta lại có, 1 < b < 2 nên đường thẳng y = b cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt khác. Do đó, f(x) = b có 3 nghiệm phân biệt khác các nghiệm trên.
Ngoài ra, 2 < c nên đường thẳng y = b cắt đồ thị hàm số y = f(x) tại 1 điểm khác các điểm trên. Hay f(x) = c có 1 nghiệm khác các nghiệm trên.
Từ đó, số nghiệm của phương trình f(f(x)) = 1 là m = 7
Chọn D
Ta có
Vì f(x) < 0, ∀ x ∈ a ; c nên |f(x)| = –f(x).
Do đó, S 1 = - ∫ a c f x d x .
Tương tự, f(x) > 0, ∀ x ∈ a ; c nên |f(x)| = f(x).
Do đó, S 2 = ∫ c b f x d x .
Vậy S = - ∫ a c f x d x + ∫ c b f x d x .