K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

25 tháng 4 2019

Đáp án D

Ta có:  y ' = 3 a x 2 + 2 b x + c

+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0

+) Đồ thị hàm số f'(x) có điểm cực trị:

1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1

Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:

f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d

do điểm tiếp xúc có hoành độ dương

=>  d = 4 3 => f(x) cắt trục tung tại điểm có tung độ  4 3

23 tháng 2 2018

Đáp án D

2 tháng 6 2018

Đáp án B.

Từ đồ thị hàm số y = f ' ( x )  ta có bảng biến thiên:

Từ bảng biến thiên ta có f ( b ) > f ( a ) > 0  

Quan sát đồ thị y = f ' ( x ) , dùng phương pháp tích phân để tính diện tích.

Ta có  ∫ a b f ' ( x ) d x < ∫ a c 0 - f ' ( x ) d x ⇒ f ( c ) < f a

Nếu f c < 0  thì đồ thị hàm số y = f   ( x )  cắt trục hoành tại 2 điểm phân biệt.

Nếu f c = 0  thì đồ thị hàm số  y = f   ( x )  tiếp xúc với trục hoành tại 1 điểm.

Nếu f c > 0  thì đồ thị hàm số  y = f   ( x )  không cắt trục hoành.

Vậy đồ thị hàm số  y = f   ( x )  cắt trục hoành tại nhiều nhất 2 điểm.

6 tháng 3 2017

Đáp án là D

Từ đồ thị f ’(x) ta lập được BBT của f(x)

=> Có 4 nghiệm là nhiều nhất

9 tháng 8 2019

Chọn đáp án D.

12 tháng 8 2017

29 tháng 7 2019

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn